Papers

Preprints

Nearest Neighbors GParareal: Improving scalability of Gaussian processes for parallel-in-time solvers.
G. Gattiglio, L. Grigoryeva, and M. Tamborrino. 2024+
pdf

Forecasting causal dynamics with universal reservoirs.
L. Grigoryeva, J. Louw, and J.-P. Ortega. 2024+
pdf

Reservoir kernels and Volterra series.
G. Gonon, L. Grigoryeva, and J.-P. Ortega. 2022+
pdf code

Option pricing and hedging with one-step Kalman filtered factors in non-affine stochastic volatility model.
A. Badescu, L. Grigoryeva, and J.-P. Ortega. 2017+

Singular regression with homoscedastic residuals: generalization error with estimated parameters.
L. Grigoryeva, J.-P. Ortega. 2016+
pdf

Non-scalar GARCH models: Composite likelihood estimation and empirical model comparisons.
L. Bauwens, L. Grigoryeva, and J.-P. Ortega. 2016+

Quantitative evaluation of the performance of discrete-time reservoir computers in the forecasting, filtering, and reconstruction of stochastic stationary signals.
L. Grigoryeva, J. Henriques, and J.-P. Ortega. 2015+
pdf

Publications (organized by topics)

Learning of Dynamic Processes and Dynamical Systems


RandNet-Parareal: a time-parallel PDE solver using Random Neural Networks.
G. Gattiglio, L. Grigoryeva, and M. Tamborrino. 2024.
To appear in Advances in Neural Information Processing Systems, 37 (NeurIPS 2024)
pdf code

Data-driven cold starting of good reservoirs.
L. Grigoryeva, B. Hamzi, F. P. Kemeth, Y. Kevrekidis, Manjunath G, J.-P. Ortega, M. J. Steynberg. 2024.
Physica D, 469, 134325.
pdf code

Memory of recurrent networks: Do we compute it right?
G. Ballarin, L. Grigoryeva, and J.-P. Ortega. 2024.
Journal of Machine Learning Research (JMLR), 25, 1-38.
pdf code

Infinite-dimensional reservoir computing.
G. Gonon, L. Grigoryeva, and J.-P. Ortega. 2024.
Neural Networks, 179, 106486.
doi pdf

Tracing curves in the plane: Geometric-invariant learning from human demonstrations.
H. Turlapati, L. Grigoryeva, J.-P. Ortega, and D. Campolo. 2024.
PLoS ONE, 19(2): e0294046
pdf code

Learning strange attractors with reservoir systems.
L. Grigoryeva, A. Hart, and J.-P. Ortega. 2023.
Nonlinearity, 36(9): 4674.
doi pdf code

Approximation bounds for random neural networks and reservoir systems.
L. Gonon, L. Grigoryeva, and J.-P. Ortega. 2023.
The Annals of Applied Probability, 33(1), 28-69.
doi pdf

Dimension reduction in recurrent networks by canonicalization.
L. Grigoryeva and J.-P. Ortega. 2021.
Journal of Geometric Mechanics, 13(4): 647-677.
doi pdf

Discrete-time signatures and randomness in reservoir computing.
C. Cuchiero, L. Gonon, L. Grigoryeva, J.-P. Ortega, and J. Teichmann. 2021.
IEEE Transactions on Neural Networks and Learning Systems, 33(11), 6321-6330.
doi pdf

Chaos on compact manifolds: Differentiable synchronizations beyond the Takens theorem.
L. Grigoryeva, A. Hart, and J.-P. Ortega. 2021.
Physical Review E, 103, 062204.
doi pdf

Risk bounds for reservoir computing
L. Gonon, L. Grigoryeva, and J.-P. Ortega. 2020.
Journal of Machine Learning Research (JMLR), 21(1), 9684–9744.
pdf

Memory and forecasting capacities of nonlinear recurrent networks
L. Gonon, L. Grigoryeva, and J.-P. Ortega. 2020.
Physica D, 414, 132721, 1-13.
doi pdf

Differentiable reservoir computing
L. Grigoryeva and J.-P. Ortega. 2019.
Journal of Machine Learning Research (JMLR), 20(179), 1-62.
pdf

Echo state networks are universal.
L. Grigoryeva and J.-P. Ortega. 2018.
Neural Networks, 108, 495-508. 
doi pdf

Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems.
L. Grigoryeva and J.-P. Ortega. 2018.
Journal of Machine Learning Research (JMLR), 19(1), 892–931.
pdf

Nonlinear memory capacity of parallel time-delay reservoir computers in the processing of multidimensional signals.
L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega. 2016.
Neural Computation. 28(7), 1411-1451.
doi pdf

Reservoir computing: Information processing of stationary signals.
L. Grigoryeva, J. Henriques, and J.-P. Ortega. 2016.
Proceedings of the 19th IEEE International Conference on Computational Science and Engineering.
Best Paper Award
doi pdf

Time-delay reservoir computers and high-speed information processing capacity.
L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega. 2016.
Proceedings of the 19th IEEE International Conference on Computational Science and Engineering.
doi pdf

Optimal nonlinear information processing capacity in delay-based reservoir computers.
L. Grigoryeva, J. Henriques, L. Larger, and J.-P. Ortega. 2015.
Scientific Reports (Nature Publishing Group), 5(12858), 1-11.
doi pdf supplement poster

Time Series Forecasting and Financial Econometrics


Reservoir computing for macroeconomic forecasting with mixed frequency data.
G. Ballarin, P. Dellaportas, L. Grigoryeva, M. Hirt, S. van Huellen, and J.-P. Ortega. 2024.
International Journal of Forecasting, 40(3), 1206-1237.
pdf code journal

Volatility forecasting using global stochastic financial trends extracted from non-synchronous data.
L. Grigoryeva, J.-P. Ortega, and A. Peresetsky. 2018.
Econometrics and Statistics, 5, 67–82.
doi pdf

Estimation and empirical performance of non-scalar dynamic conditional correlation models.
L. Bauwens, L. Grigoryeva, and J.-P. Ortega. 2016.
Computational Statistics & Data Analysis, 100, 17-36.
doi pdf poster code

Asymptotic forecasting error evaluation for estimated temporally aggregated linear processes.
L. Grigoryeva and J.-P. Ortega. 2015.
International Journal of Computational Economics and Econometrics (IJCEE), 5(3), 289-318.
doi pdf code

Hybrid forecasting with estimated temporally aggregated linear processes.
L. Grigoryeva and J.-P. Ortega. 2014.
Journal of Forecasting, 33, 577-595.
doi pdf

Physiological Time Series Analysis


Bedside evaluation of the functional organization of the auditory cortex in patients with disorders of consciousness.
J. Henriques, L. Pazart, L. Grigoryeva, E. Muzart, Y. Beaussant, E. Haffen, T. Moulin, R. Aubry, J.-P. Ortega, and D. Gabriel. 2016.
PLOS ONE, 11(1): e0146788.
doi pdf

Protocol design challenges in the detection of awareness in aware subjects using EEG signals
J. Henriques, D. Gabriel, L. Grigoryeva, E. Haffen, T. Moulin, R. Aubry, L. Pazart, J.-P. Ortega. 2016.
Clinical EEG & Neuroscience, 47(4), 266-275.
doi pdf

Substitute or complement? Defining the relative place of EEG and fMRI in the detection of voluntary brain reactions.
D. Gabriel, J. Henriques, A. Comte, L. Grigoryeva, J.-P. Ortega, E. Cretin, G. Brunotte, E. Haffen, T. Moulin, R. Aubry, L. Pazart. 2015.
Neuroscience, 290, 435-444.
doi pdf

EEG- and fMRI-based communication tools in disorders of consciousness: which is the most reliable method?
D. Gabriel, A. Comte, J. Henriques, E. Magnin, L. Grigoryeva, J.-P. Ortega, E. Haffen, T. Moulin, L. Pazart, R. Aubry. 2013.
Clinical EEG and Neuroscience, 44(4), E111.
doi poster

Modeling of Physical Systems


Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies.
L. Grigoryeva, J.-P. Ortega, and S. Zub. 2014. 
Journal of Geometric Mechanics, 6(3), 373-415. 
doi pdf

A dynamical model of a free body in central and non-central physical fields and its Maple-analysis.
L. V. Grygor’yeva. 2008. 
Bulletin of the University of Kyiv (Series: Physics and Mathematics), 2, 61-67. (in Ukrainian)
pdf

Maple-exploring of a free flywheel suspended by the superconductive bearing
L. V. Grygor’yeva. 2008.
Bulletin of the University of Kyiv (Series: Physics and Mathematics), 1, Kyiv: P. 75–80.
pdf

Capabilities of the system Maple in studying dynamic systems of magnetically interacting free bodies.
L. V. Grigor’eva, V. V. Kozorez, and S. I. Lyashko. 2007.
Cybernetics and Systems Analysis, 43(6), Springer New York: 912-916. (Translated from Kibernetika i Sistemnyi Analiz, 6, 178-183, 2007).
doi

The dynamic problem of two free cylindrical magnets and its Maple-modelling
L. V. Grygor’yeva, V. V. Kozorez, A. V., Kozorez, and S. I. Lyashko. 2007.
Bulletin of the National Academy of Sciences of Ukraine, 11, 41-47. (in Ukrainian)
pdf

Maple-modeling of dynamics of a rigid body with a fixed point in the field of magnetic and electric forces
L. V. Grygor’yeva, V. V. Kozorez, and S. I. Lyashko. 2007.
Bulletin of the National Academy of Sciences of Ukraine, 8, 45-48. (in Ukrainian).
pdf

Maple-exploring of superconductive levitation in circle-dipole system (MPW in dipole due to circle).
Kozoriz, V. V., Lyashko, S. I., Tkachenko, R. L., Grigoryeva, L. V. 2007.
Journal of Applied and Computational Mathematics, 1(94), 48-55.
pdf